

Transcript Title	System Integration				
Gradebook Title	System Integration	System Integration			
Status	Uploaded to Banner	Start Term	2024		
NFQ Level	08	ECTS Credits	05		
Attendance	N/A	Duration	Semester - (15 Weeks)		
Subject Area	0714 Electronics & Automation	Delivery Mode	Full Time, Blended		
Grading Mode	Numeric/Percentage	Failed Component	None		
Department	Electronic & Electrical Eng	Campus	Galway		
Module Author	Module Author Carine Gachon				

Module Description

This module will look at the data architecture of a manufacturing plant from manufacturing floor up to ERP level in accordance with the ISA-95. Students will learn how to assess an existing data architecture and plan for a new one taking into account validation requirements. On a practical level students will build a SCADA system integrating data from various equipments.

Learning Outcomes

■ On completion of this module the learner will/should be able to:

1. Assess the existing data architecture of a manufacturing plant and its components.

2. Design specification for a data architecture based on user requirements considering sustainable development goals.

3. Plan horizontal and vertical integration of a data architecture in a manufacturing system.

4. Develop a data management system at SCADA level.

5. Develop an integration plan considering validation.

Indicative Syllabus

Digital Maturity Assessment - 1 hr lecture

Digitalisation and sustainable Development Goals- 1hr

Vertical integration

•ISA-95, ISO 62264, B2MML - Overview (1hr lecture)

•ERP -Understanding the role of the ERP. (1 hr lecture)

•SDADA and Manufacturing Execution systems- Understanding their role and development of a SCADA/MES system. (20 hr practical-see below)

•Data models- batch system, recipe management system, machine performance data (OEE), process monitoring parameters,...

•Data interface, API, OPC and OPC UA

•Validation- Computer Software Assurance - GAMP5- Vmodel (2 hr lecture)

Horizontal integration

•Legacy equipment assessment–(hardware and communication system, code review assessment for data compatibility, Integration with new equipment,cost of return of upgrading the equipment) - (2hr lecture)

•New Equipment procurement-(Compability and return on investment) - (2hr lecture)

•Integration and compatibility- (2hr lecture)

Skill Gap Analysis - (1hr lecture)

Laboratory activities (20hr practical)

- · Considerations and benefits of SCADA systems
- System reliability and availability

- The twelve golden rules for SCADA implementation
- Cyber security best practices.
- Data acquisition through industrial ethernet
- Alarm management through SCADA
- Automatic generation of reports for process performance evaluation

Teaching and Learning Strategy

This module will be delivered in a blended mode with 1 hr online lecture per week to cover the theory on data architecture and associated technologies. The practical classes will concentrate on developing a SCADA system.

TL strategies used in this module include:

Direct-instruction strategy: e.g. online synchronous lectures;

Activity-based strategy: e.g. practice various techniques or prove concepts during practical activities; repeat an activity, review and feedback; individual projects; case studies

Cooperative strategy: e.g. facilitated group work to critically explore, formulate and communicate ideas, interpretations and conclusions;

ICT-based strategy: use of a virtual learning environment (Moodle) for interactive activities, information storage and assessment (quizzes); use software in class; use of various tools for feedback and formative assessment (e.g. Socrative, Padlet); use of Microsoft Teams for synchronous lectures delivery and for group work in breakout rooms

Independent learning strategy: e.g. directed study, flipped classroom

Critical thinking-skills strategy: e.g. problem-solving; creative thinking.

Assessment Strategy

The assessment strategy will include online quizzes, practical evaluations and a report where students will discuss aspects of the data architecture of their company and propose improvement.

Repeat Assessment Strategies

Students can resubmit their report and a practical repeat assessment will be offered.

Indicative Coursework and Continuous Assessment:		100 %		
Form	Title	Percent	Week (Indicative)	Learning Outcomes
Written Report/Essay	Data architecture analysis	30 %	End of Term	1,2,3,5
Multiple Choice/Short Answer Test	Online quizzes	20 %	OnGoing	1,2,3,5
Practical Evaluation	End of term practical assessment	20 %	End of Term	2,3,4
Practical Evaluation	Programming and Troubleshooting	30 %	OnGoing	2,3,4

Full Time Delivery Mode:			3.00 Hours		
Туре	Description	Location	Hours	Frequency	Weekly Avg
Lecture	Online lecture	Online	1	Weekly	1.00
Practical / Laboratory	Practical	Engineering Laboratory	2	Weekly	2.00
Independent Learning	Independent Learning	Not Specified	4.5	Weekly	4.50

Blended Delivery Mode:			3.00 Hours		
Туре	Description	Location	Hours	Frequency	Weekly Avg
Lecture	Online lecture	Online	1	Weekly	1.00
Practical / Laboratory	Practical	Laboratory	2	Weekly	2.00
Independent Learning	Independent Learning	Not Specified	4.5	Weekly	4.50

Required Reading Book List

Singh, J., (2015). *PLC And SCADA*. ISBN 9351382427 ISBN-13 9789351382423

McCrady, G., (2013). *Designing SCADA Application Software*. Elsevier. ISBN 9780124170353 ISBN-13 0124170358

Tupper, C., (2011). *Data Architecture*. Morgan Kaufmann Pub. ISBN 0123851262 ISBN-13 9780123851260

, E., Kott, A., (2016). *Cyber-security of SCADA and Other Industrial Control Systems*. Springer. ISBN 9783319321257 ISBN-13 3319321250

Rieger, C., Ray, I., Zhu, Q., Haney, A., (2019). *Industrial Control Systems Security and Resiliency*. Springer Nature. ISBN 9783030182144 ISBN-13 3030182142

Ackerman, P., (2021). *Industrial Cybersecurity - Second Edition*. Packt Publishing. ISBN 1800202091 ISBN-13 9781800202092

Programme Membership

GA_EADMG_L08 202400 Higher Diploma in Engineering in Automation and Digital Manufacturing

GA_EADMG_H08 202400 Bachelor of Engineering (Honours) in Automation and Digital Manufacturing

- $\mathsf{GA_EAMFG_H08}\ \texttt{202400}\ \mathsf{Bachelor}\ \mathsf{of}\ \mathsf{Engineering}\ (\mathsf{Honours})\ \mathsf{in}\ \mathsf{Automation}\ \mathsf{and}\ \mathsf{Digital}\ \mathsf{Manufacturing}$
- GA_EAMSG_H08 202400 Bachelor of Engineering (Honours) in Advanced Manufacturing Systems

GA_SMOEG_I08 202400 M-C Programme (Mechanical Engineering Department L8)